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ABSTRACT
In this paper, we propose a new parameterization method to

represent rotation matrices using the angles ~φ recovered from the
three direction cosines that lie on the diagonal. The map from the
possible configuration space of the new variable ~φ to the solid
ball model in axis-angle coordinates is constructed. We also in-
troduce a bi-invariant metric and two left-invariant metrics for
measuring the distance in configuration space which could be
the foundation for path planning in ~φ space. We further analyze
the Jacobian matrix and singularities to better understand the
manipulability.

INTRODUCTION
The parameterization of the rotation group SO(3) is a ba-

sic topic in the kinematics community that has been illustrated
in various coordinate systems, such as Euler angles [1], axis-
angle coordinates [2], direction cosines [3], etc. A rotation ma-
trix describes the orientation of a body-fixed right-hand orthog-
onal frame relative to an inertial right-hand orthogonal frame,
and is invariant to the coordinates or representations. Different
parameterization methods are superior in different application ar-
eas. For comprehensive and classic descriptions of rotations and
motions, see [4] [5] [6] [7]. For overviews of parameterization
methods, see [8] [9]. For relatively recent rotation parameteriza-
tions, see [10] [11] [12].

Axis-angle coordinates for pure rotations have two key ele-
ments which are rotation magnitude θ and axis ~n. In the kine-
matics of series manipulators, the forward kinematics between
the end effector and the base link can be conveniently expressed
as the product of exponentials [13]. The geometric model for the
special orthogonal group SO(3) [14] [15] can be generated from
θ and ~n, which can be used as coordinates for the solid ball of
radius π . Each point in the ball corresponds to a rotation.

In spacecraft kinematics, a rotation matrix is usually called
a direction cosine matrix. This is because each element in the
matrix can be explained as the cosine between a unit axes vector
in body-fixed frame and one in spatial-fixed frame [16]. In this
paper, instead of using nine direction cosines to fill in the rotation
matrix, we recover it using the three direction cosines sitting on
the diagonal, the angles recovered from which are denoted as ~φ =
(φ1,φ2,φ3). ~φ is the new variable vector in our three direction
cosine coordinates.

The remainder of this paper is organized as follows. We first
review two parameterizations of SO(3): (1) axis-angle coordi-
nates, and (2) direction cosines. The rotation magnitude θ , axis
~n and matrix R are then represented in terms of ~φ . We discuss
three cases for there different representation for ~n. Another in-
teresting thing we discussed is the ~φ configuration space. The
onto map from ~φ space to the solid ball as one geometric model
for SO(3) is constructed. After getting the rotation matrix, we
discuss several properties of it such as the transpose and the in-
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verse of the rotation matrix. Three new metrics in terms of ~φ
are then developed for measuring the magnitude of rotation. To
understand the manipulability of the new parameterization, we
find the Jacobian matrix and singular configurations. Switching
singularities and boundary singularities are further defined based
on their different relationships with the Jacobian. The paper con-
cludes with a simple trajectory mapping task from R(t) to ~φ(t).

PARAMETERIZATION OF A ROTATION
Axis-angle Coordinates

When only considering the pure rotation of a rigid body
about a given axis by some amount, the orientation of the body
is described as the relative orientation of a coordinate frame at-
tached to the body and a fixed frame. All the coordinate frames
are right-handed without extra statement. The body fixed frame
is coincident with the spatial fixed frame before rotating.

For axis-angle coordinates, the rotation can be represented
as

R = exp(θN) (1)

where

N = n̂ =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 , (2)

and ~n = (n1,n2,n3)
T is the unit vector specifies the rotation di-

rection. θ denotes the rotation magnitude.
An efficient way to calculate exp(θN) is using Rodrigues’

formula [17],

R = I + sinθN +(1− cosθ)N2. (3)

Defining v(θ) = 1−cos(θ) and using sθ and cθ to represent
sinθ and cosθ respectively, the rotation matrix R can then be
expanded as

R = (4) cθ +n2
1v(θ) n1n2v(θ)−n3sθ n1w3v(θ)+n2sθ

n1n2v(θ)+n3sθ cθ +n2
2v(θ) n2n3v(θ)−n1sθ

n1n3v(θ)−n2sθ n1sθ +n2n3v(θ) cθ +n2
3v(θ)

 .

Direction Cosine Matrix
As a general way of notation, we have the rotation matrix as

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (5)

The matrix stacked by the unit length axes vectors of spatial
frame is S = (~e1,~e2,~e3). Without loss of generality, by reordering
ei, we could have S = I. The corresponding matrix stacked by
unit length axes vectors of the body fixed frame viewed in spatial
fixed frame is T = (~e1

′,~e2
′,~e3

′).
Suppose the body fixed frame is rotated by R. We have(

~e1
′ ~e2
′ ~e3
′) = R

(
~e1 ~e2 ~e3

)
R =

(
~e1
′ ~e2
′ ~e3
′)(~e1 ~e2 ~e3

)T (6)

=

~e1
′ ·~e1 ~e1

′ ·~e2 ~e1
′ ·~e3

~e2
′ ·~e1 ~e2

′ ·~e2 ~e2
′ ·~e3

~e3
′ ·~e1 ~e3

′ ·~e2 ~e3
′ ·~e3

 .

Equating Eqn.6 with Eqn.5, we have

~ei
′ ·~e j = ri j = ‖ei‖‖e j‖cosφi j = cosφi j. (7)

Thus, ri j is the cosine of the angle between e′i and e j and that
is why the rotation matrix is so called direction cosine matrix.

ROTATION MATRIX BASED ON THREE DIRECTTION
COSINES

The definition of the variables for the three direction cosines
parameterization is the angles recovered from the diagonal el-
ements of rotation matrix denoted as φ1, φ2, and φ3. A visual
demonstration is shown in Fig.1. The x0y0z0 frame is the spatial
fixed frame and the x′y′z′ frame is the body fixed frame.

When i = j,

~ei
′ ·~ei = ‖ei‖2 cosφi = cosφi = rii. (8)

The trace of rotation matrix in terms of θ and ~φ is

trace(R) = 1+2cθ = cosφ1 + cosφ2 + cosφ3. (9)

The rotation magnitude can then be represented using ~φ as

θ = arccos
cosφ1 + cosφ2 + cosφ3−1

2
. (10)

Another key element for the axis-angle coordinates is the
rotation axis~n. To get the map from~n to ~φ and also the rotation
matrix, three cases are discussed.

Case I
When φ1 = φ2 = φ3 = 0, it is obvious that R= I, which is the

identity matrix. In this case, the body frame is coincident with
the spatial frame.
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FIGURE 1: DEFINITION OF ~φ .

Case II
When only one angle is zero, which means φi = 0, i =

1,2 or 3, the rotation axis is coincident with the ith axis of
the spatial frame. For example, when given φ1 = 0, the body
fixed frame can only rotate around the x axis. This will make
φ2 = φ3 = θ , θ ∈ (−π,π] and thus the rotation matrix is

Rx =

1 0 0
0 cθ −sθ

0 sθ cθ

 . (11)

Similarly, when φ2 = 0, the frame rotates around y axis and

Ry =

 cθ 0 sθ

0 1 0
−sθ 0 cθ

 . (12)

When φ3 = 0, the rotation axis is z axis,

Rz =

cθ −sθ 0
sθ cθ 0
0 0 1

 . (13)

It should be noted that there is no such case that two out of
the three angles are both zero and the other one is not zero.

Case III
When all the φi, i = 1,2,3 are not zero, substituting Eqn.8

and Eqn.10 back to the diagonal elements of Eqn.4, we can get
the closed form expression of~n, the elements of which are

n1 =±

√
1+ cosφ1− cosφ2− cosφ3

3− cosφ1− cosφ2− cosφ3
(14)

n2 =±

√
1− cosφ1 + cosφ2− cosφ3

3− cosφ1− cosφ2− cosφ3
(15)

n3 =±

√
1− cosφ1− cosφ2 + cosφ3

3− cosφ1− cosφ2− cosφ3
. (16)

Note that the signs of elements in~n determine the octant that
~n lies in. Each of the eight combinations of the signs corresponds
to an octant respectively. To relate the sign to φ , define the step
function σ(x) as

σ(x) =

{
1, when x < 0
0, when x≥ 0.

(17)

The relationship between σ(φ) and the sign of φ is

σ(φ) =
1− sgn(φ)

2
. (18)

Note that there are some repeated elements in ~n. The de-
nominators of element under square root for ni, i = 1,2,3 are the
same. To simplify the representation, define

p0(~φ) = 3− cosφ1− cosφ2− cosφ3

p1(~φ) = 1+ cosφ1− cosφ2− cosφ3

p2(~φ) = 1− cosφ1 + cosφ2− cosφ3 (19)

p3(~φ) = 1− cosφ1− cosφ2 + cosφ3

p4(~φ) = 1+ cosφ1 + cosφ2 + cosφ3.

Therefore,~n is

~n =


(−1)σ(φ1)

√
p1
p0

(−1)σ(φ2)
√

p2
p0

(−1)σ(φ3)
√

p3
p0

 . (20)
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By substituting ~n and θ back to Eqn.4, we can get the rota-
tion matrix R = (c1,c2,c3) in terms of φ , where

c1 =

 cosφ1
1
2 ((−1)σ(φ1)+σ(φ2)

√
p1 p2 +(−1)σ(φ3)

√
p3 p4)

1
2 ((−1)σ(φ1)+σ(φ3)

√
p1 p3 +(−1)1+σ(φ2)

√
p2 p4)


c2 =

 1
2 ((−1)σ(φ1)+σ(φ2)

√
p1 p2 +(−1)1+σ(φ3)

√
p3 p4)

cosφ2
1
2 ((−1)σ(φ2)+σ(φ3)

√
p2 p3 +(−1)σ(φ1)

√
p1 p4)


c3 =

 1
2 ((−1)σ(φ1)+σ(φ3)

√
p1 p3 +(−1)σ(φ2)

√
p2 p4)

1
2 ((−1)σ(φ2)+σ(φ3)

√
p2 p3 +(−1)1+σ(φ1)

√
p1 p4)

cosφ3

 .

(21)

For instance, when~n is in Octant I, which means the sign of
ni is ”+”, the rotation matrix is

 cosφ1
1
2 (
√

p1 p2−
√

p3 p4)
1
2 (
√

p1 p3 +
√

p2 p4)
1
2 (
√

p1 p2 +
√

p3 p4) cosφ2
1
2 (
√

p2 p3−
√

p1 p4)
1
2 (
√

p1 p3−
√

p2 p4)
1
2
√

p2 p3 +
√

p1 p4) cosφ3

 .

(22)

Note that the element under square root in the elements of
the rotation matrix remains the same no matter which octant that
~n lies in. However, the sign before the square root element varies
depending on the octant. Another thing to mention is that by
substituting φi = 0 into the rotation matrix for Case III which is
Eqn.21, we can get the corresponding matrix in Case II. The rea-
son why we discuss Case II and Case III separately is that Case
II is a unique type of singularity which will be further developed
later in the paper.

Equivalent Demonstration of Rotation Matrix
Here we show the relationship between ~φ and rotation ma-

trix R, and the relationship between (~n,θ) and ~φ . Given any ro-
tation matrix R ∈ SO(3), we can get the unit rotation axis vector
~n and the magnitude θ as

~n =

(
R−RT

2 · sinθ

)∨
(23)

θ = arccos
tr(R)−1

2
. (24)

~φ can be determined given rotation matrix based on Eqn.8

and Eqn.20. First define the revised sign function as

sgnrev(x) =


1, when x > 0
1 or −1, when x = 0
−1, when x < 0

. (25)

Then we can have a relatively simple representation for ~φ as

~φ =

sgnrev(n1) · arccos(r11)
sgnrev(n2) · arccos(r22)
sgnrev(n3) · arccos(r33)

 . (26)

If the rotation vector~n and magnitude θ are given, one way
is to refer the diagonal elements of R in terms of (~n,θ) in Eqn.4.
We can have ~φ as

~φ =

 sgnrev(n1) · arccos{cθ −n2
1 cos(θ)+n2

1}
sgnrev(n2) · arccos{cθ −n2

2 cos(θ)+n2
2}

sgnrev(n3) · arccos{(cθ −1)
(
n2

1 +n2
2
)
+1}

 . (27)

Conversely, given ~φ , we can get the rotation matrix R via
Eqn.21. The magnitude is derived by Eqn.10 and the rotation
vector by Eqn.20.

CONFIGURATION SPACE
To find the configuration space of ~φ , we first concentrate on

the range of p j, j = 0,1, ...,4 defined above.
Since R ∈ SO(3) is a rotation matrix, the elements of R have

to be real numbers. We have to restrict the square roots in R to be
real numbers. For Case III, p0 is always a positive real number.
Thus, q j, j = 1,2,3,4 should be non-negative. Together with the
configuration space for Case I which is the origin in ~φ space
when p0 = 0, the constraints imposed on configuration space can
then be concluded as

p0 ≥ 0
p1 ≥ 0
p2 ≥ 0 (28)
p3 ≥ 0
p4 ≥ 0.

By plotting equations as q j = 0, j = 1,2,3,4 implicitly in
MATLAB, we can get the surface of configuration space of ~φ
visualized as Fig.2. The range of φi is [−π,π]. The surface gen-
erated by the same equation is shown in the same color. All the
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FIGURE 2: ~φ SPACE.

FIGURE 3: OCTANT I OF ~φ SPACE.

configurations inside and on the surface form the configuration
space. Note that that the configuration space is centrally symmet-
ric about the origin. There are eight identical concave tetrahedral
units and each tetrahedron sits in one octant in ~φ space. For ex-
ample, the tetrahedron in Octant I is shown in Fig. 3. Concave
tetrahedron means that the surface of tetrahedron is concave.

Relationship between Configuration Spaces
It is known that one geometric model of the rotation group

SO(3) is a solid ball of radius π . Each dot in the ball represents
a rotation configuration with rotation vector from the origin to
the point and magnitude as the distance of the point to the origin.
The issue left is that the rotation through π and−π are the same.
In other words, the points on the hypersphere of the ball that
are symmetric about the origin are connected. The solid ball
could also be seen as the configuration space for the axis-angle
coordinates.

Knowing the configuration space of ~φ , we can construct a
surjective(onto) function from ~φ space to the solid ball. More
precisely, the function can map each octant of ~φ space to 1/8 of
the solid ball that lies in the corresponding octant. A similar issue
also happens: the points on the surface when φi = π is connected
with the symmetric points about the origin which satisfies φi =
−π .

Though the two geometric models look quite different, the ~φ
space can be regarded as a reshaped model of the ball. The rela-
tionship of surface p1, p2 and p3 in ~φ space and the octant plane
in (θ ,~n) space is shown in Tab.1. The mapping between p4 in ~φ
space and sphere in (θ ,~n) space is shown in Tab.2. Those two ta-
bles follow similar convention. The first column shows the type
of surface in ~φ space and the second column is the octant that the
surface lies in. The third and forth column is the corresponding
configuration in (θ ,~n) space. For example, n2− n3 in Tab.1 is
the plane determined by n2 and n3 axis. The forth column shows
the correspond quadrant. For Tab.2, the third column denotes the
sphere and the forth is the octant that the corresponding surface
lies in. In Tab.1, the two octants in the second column means that
they can both be mapped to the same surface in (θ ,~n) space and
thus they are actually connected in ~φ space. This property will
be used in the discussion of application.

PROPERTIES OF ROTATION MATRICES
Inverse and Transpose of a Rotation

By direct calculation, the inverse as well as the transpose of
the rotation R(~φ) is just the rotation matrix in terms of −~φ .

R(~φ)−1 = R(~φ)T = R(−~φ). (29)

Metrics for Rotations
Metric Candidates Metric can be seen as the distance

in configuration space and could be used in various areas such as
motion planning [18]. A metric d for SO(3) group should satisfy
usual axioms [19] for metrics which are

d(R1,R2) = 0⇔ R1 = R2

d(R1,R2) = d(R2,R1) ∀R1,R2 ∈ SO(3)
d(R1,R3)≤ d(R1,R2)+d(R2,R3) ∀R1,R2,R3 ∈ SO(3). (30)
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TABLE 1: MAPPING OF SURFACE FOR p1, p2 AND p3.

~φ space Octant (θ ,~n) space Quadrant

p1 I or II n2−n3 I

p1 III or IV n2−n3 II

p1 VII or VIII n2−n3 III

p1 V or VI n2−n3 IV

p2 I or IV n1−n3 I

p2 II or III n1−n3 II

p2 VI or VII n1−n3 III

p2 V or VIII n1−n3 IV

p3 I or V n1−n2 I

p3 II or VI n1−n2 II

p3 III or VII n1−n2 III

p3 IV or VIII n1−n2 IV

TABLE 2: MAPPING OF SURFACE FOR p4.

~φ space Octant (θ ,~n) space Octant

p4 I Sphere I

p4 II Sphere II

p4 III Sphere III

p4 IV Sphere IV

p4 V Sphere V

p4 VI Sphere VI

p4 VII Sphere VII

p4 VIII Sphere VIII

where R1,R2 ∈ SO(3).
Another useful property is bi-invariance, which means that

for every R0 in SO(3):

d(R0R1,R0R2) = d(R1R0,R2R0) = d(R1,R2). (31)

We first define the map from ~φ to rotation matrix R as f ,
f : ~φ → R. The inverse operation can be denoted as f−1 : R→ ~φ .

The relative φ between the two body fixed frames rotated via R1
and R2 respectively is

~φ = f−1(RT
1 R2), (32)

the elements of which is

φi = signrev(ni)cos−1((RT
1 R2)ii). (33)

Note that the absolute value of φi is the angle between the ith
axes of two body frames rotated by R1 and R2. This angle is still
measured in Euclidean space.

It is known that rotation magnitude θ in Rodrigues formula
is a well defined metric for SO(3). Thus, by representing θ by ~φ ,
we can get a good metric as

d(R1,R2) = arccos
cosφ1 + cosφ2 + cosφ3−1

2
. (34)

Other metric candidates such as

d1(R1,R2) = |φ1|+ |φ2|+ |φ3| (35)

d2(R1,R2) =
√

(φ1)2 +(φ2)2 +(φ3)2 (36)

d3(R1,R2) = max
i
|φi|. (37)

are all left-invariant but not right-invariant.

Invariant Property The proof of the left-invariant prop-
erty is as follows.

Proof. When multiplying the same rotation matrix R0 on the left
side, the relative φ changes to

~φL = f−1((R0R1)
T (R0R2)) = f−1((RT

1 RT
0 )(R0R2))

= f−1(RT
1 (R

T
0 R0)R2) = f−1(RT

1 R2) = ~φ .

Since the result ~φL is the same as the initial ~φ , the metrics
derived from ~φL and ~φ should also be the same, which means the
three metric candidates are all left-invariant.

Similar derivation can also be applied on the case when right
multiplying R0.

~φR = f−1((R1R0)
T (R2R0)) = f−1((RT

0 RT
1 )(R2R0))

= f−1(RT
0 (R

T
1 R2)R0),
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TABLE 3: EXAMPLE OF METRICS

Metric d1 d2 d3

(R1R0,R2R0) 4.0397 2.3680 1.6744

(R0R1,R0R1) 4.0472 2.3502 1.5073

(R1,R2) 4.0472 2.3502 1.5073

which is not the same as ~φ unless R0, R1 and R2 commute. Multi-
plication of rotation matrices is usually not commutative except
for considering small angles or rotations around the same axis.
However, the value of ~φ being different can not be regarded as
a sufficient condition for the nonexistence of the right-invariant
property, because it is possible for R(~φ1) =R(~φ2) even if ~φ1 6= ~φ2.

To prove the metrics are not right-invariant, we can give a
counterexample. Suppose ~φ1 = [2;1.3;1.5], ~φ2 = [−1.7;2;1.5],
~φ0 = [1.6;0.7;1.5]. The numerical values of metrics are listed in
Tab. 3. By comparing the first and third row, we can tell the three
metric candidates are not right-invariant.

Triangle Property Another property which is interesting
to prove is the triangle inequality shown in Eqn.30. The proofs
are as follows.

Proof. For d1, triangle inequality could be expanded and recom-
bined as

d1(R1,R2)+d1(R2,R3)−d1(R1,R3)

=|φ 12
1 |+ |φ 12

2 |+ |φ 12
3 |+ |φ 23

1 |+ |φ 23
2 |+ |φ 23

3 |− |φ 13
1 |− |φ 13

2 |− |φ 13
3 |

=(|φ 12
1 |+ |φ 23

1 |− |φ 13
1 |)+(|φ 12

2 |+ |φ 23
2 |− |φ 13

2 |)
+(|φ 12

2 |+ |φ 23
2 |− |φ 13

2 |) (38)

where the subscript of φ symbols the axis. The superscript rep-
resents the two relative frames.

To prove the property, we use Cauchy-Schwarz inequality
for angles between vectors [20]

ψxz ≤ ψxy +ψyz (39)

where x,y,z ∈ C3 are three vectors and ψ is the angle between
them. Thus we could get that each bracket in Eqn.38 is greater
or equal to 0. It shows that d1 satisfies the triangle inequality.

Proof. For d2, to simplify the representation, we use x to replace
φ 13, y for φ 12 and z for φ 23. The triangle property that we seek is

√
x2

1 + x2
2 + x2

3 ≤
√

y2
1 + y2

2 + y2
3 +
√

z2
1 + z2

2 + z2
3. (40)

By taking the square of Eqn.40 on both sides, we have

x2
1 + x2

2 + x2
3 ≤ y2

1 + y2
2 + y2

3 + z2
1 + z2

2 + z2
3+

2
√
(y2

1 + y2
2 + y2

3)(z
2
1 + z2

2 + z2
3). (41)

Using Cauchy-Schwarz inequality again, we have

x2
1+x2

2+x2
3≤ y2

1+z2
1+2y1z1+y2

2+z2
2+2y2z2+x2

3y2
3+z2

3+2y3z3.
(42)

Comparing Eqn.41 and Eqn.42, we could notice that if

y1z1 + y2z2 + y3z3 ≤
√
(y2

1 + y2
2 + y2

3)(z
2
1 + z2

2 + z2
3). (43)

holds, Eqn.40 holds. Taking square of Eqn.43 and subtracting
right hand side from left hand side, we have

(y1z1 + y2z2 + y3z3)
2− (y2

1 + y2
2 + y2

3)(z
2
1 + z2

2 + z2
3)

=− (y1z2− y2z1)
2− (y1z3− y3z1)

2− (y2z3− y3z2)
2 ≤ 0. (44)

Thus Eqn.40 holds. Metric d2 satisfies triangle property.

Proof. For d3, suppose φ 13
1 is the maximum value among ~φ 13.

From Krein’s inequality, we have

φ
13
1 ≤ φ

12
1 +φ

23
1 . (45)

Since φ 12
1 ≤ max~φ 12 and φ 23

1 ≤ max~φ 23, the triangle inequality
for metric d3 holds.

JACOBIAN AND SINGULARITY ANALYSIS
Usually, the singular configuration is where the Jacobian

matrix loses its usual rank, i.e det(J) = 0. When only using
~φ which contains three coordinates to represent the rotation in
SO(3), singularity might be artificially induced by the angles’
definition. Jacobian matrix could map the velocity in configura-
tion space to Euclidean space.

Spatial and Body Jacobian of a Rotation
Based on the chain rule, the partial derivative of R(~φ) is

Ṙ =
∂R
∂φ1

φ̇1 +
∂R
∂φ2

φ̇2 +
∂R
∂φ3

φ̇3. (46)
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FIGURE 4: SWITCHING SINGULARITIES.

The body Jacobian matrix is

Jb(φ1,φ2,φ3) =

[(
RT ∂R

∂φ1

)∨
,

(
RT ∂R

∂φ2

)∨
,

(
RT ∂R

∂φ3

)∨]
.

(47)
The spatial Jacobian matrix is

Js(φ1,φ2,φ3) =

[(
∂R
∂φ1

RT
)∨

,

(
∂R
∂φ2

RT
)∨

,

(
∂R
∂φ3

RT
)∨]

.

(48)
Knowing that Eqn. 21 is a general version of rotation matrix

suitable for Case II and Case III, we can get the body and spatial
Jacobian matrix for it. Although the closed form of Jacobian
matrix looks big, the determinants of spatial and body Jacobian
are the same. For example, the Jacobian Matrix in Octant I is
Jb = (Jc1,Jc2, Ic3) , where

Jc1 =
1

2p0
√

p1 p2 p3 p4
· (49) −p0(cφ2 + cφ3)sφ1
√

p2 p3− p0
√

p1 p4(cφ2− cφ3)sφ1√
p1 p3(p1 + p0cφ2 +2)sφ1− p0

√
p2 p4(cφ2−1)sφ1

(−p3 + p0cφ3 +4)sφ1
√

p1 p2 + p0(cφ3−1)sφ1
√

p3 p4


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FIGURE 5: SWITCHING SINGULARITIES IN OCTANT I.

Jc2 =
1

2p0
√

p1 p2 p3 p4
· (50) p0(cφ1 +1)sφ2
√

p2 p3 + p0(cφ1−1)sφ2
√

p1 p4
p0
√

p2 p4(cφ1− cφ3)sφ2− p0
√

p1 p3(cφ1 + cφ3)sφ2√
p1 p2(−p3 + p0cφ3 +4)sφ2− p0

√
p3 p4(cφ3−1)sφ2



Jc3 =
1

2p0
√

p1 p2 p3 p4
· (51) p0

√
p2 p3(cφ1 +1)sφ3− p0

√
p1 p4(cφ1−1)sφ3

(p1 + p0cφ2 +2)sφ3
√

p1 p3 + p0(cφ2−1)sφ3
√

p2 p4
−p0(cφ1 + cφ2)sφ3

√
p1 p2− p0

√
p3 p4(cφ1− cφ2)sφ3

 .

Also, although the rotation matrices in each octant are differ-
ent, the absolute values of determinant of Jacobian are the same
as Eqn.52.

|J|= |sφ1sφ2sφ3|√
p1 p2 p3 p4

. (52)

Switching Singularities
A switching singularity is defined to be when the numerator

of Jacobian is zero. It happens when the configuration switches
between different cases discussed in forward kinematics part.

8 Copyright c© 2018 by ASME



The singular configuration is shown in Fig.4. The analytical ex-
pression for singular configuration in Octant I is shown in Fig.5.
This kind of singularity contains three types.

The first kind of switching singularity corresponds to con-
figurations when

φi = 0, i = 1, 2, or 3.

In this case, a singular rotation configuration satisfies both
Case II and Case III. In other words, a rotation configuration can
be seen as a switching point between Case III and II. In Case II,
body fixed frame rotate around one of its axes. So there is an
extra constraint that φ j = φk, j 6= k 6= i. This will cause the loss
of degrees of freedom.

The origin, where all of the three angles are 0 which is Case
I, is also a singular configuration.

The third case is when

φi = π or−π, i = 1, 2 or 3.

For example, when i = 1, the body fixed frame rotates
around the −x axis. This could be seen as identical to Case II
since rotating around x by θ is the same as rotating around −x
by −θ . The extra constraint that φ j +φk = π will also result in
the DOF’s deficiency.

Boundary Singularities A boundary singularity is de-
fined to be when the denominator of Jacobian is zero. Based on
Eqn.52, when each p j = 0, j = 1,2,3 or 4 equals to 0, there is a
boundary singular configuration. Thus, all the configurations on
surface of the ~φ space except for the switching singular config-
urations are boundary singularities. It means very small φ space
velocity can be converted into quite large angular velocity. The
body fixed frame would be out of control.

APPLICATION
One important thing to note is that the configuration co-

ordinate for three direction cosine coordinates is ~φ instead of
cos~φ = (cosφ1,cosφ2,cosφ3). Based on the rotation matrix in
Eqn.21, we can tell that the expression is relative to the sign of ~φ
which could not be recovered from the cosine value. Thus, when
given a single point in cos~φ space, it is not possible to deter-
mine the octant that ~φ lies in and therefore cannot get the unique
rotation matrix.

However, in real rigid body motion, when trying to control
the body-fixed frame from an initial orientation to a final orien-
tation via (cos~φ)(t), we could use the continuity of trajectory to
determine the signs of ~φ . The continuity of trajectory means the
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FIGURE 6: (cos~φ)(t).

continuity of both ~φ and ~̇φ . For ~φ , the configuration space in
each octant are connected not only at the origin, but also on the
surface. For example, the point Q1 = (q1,q2,q3) on p1 surface
in Octant I and point Q2 = (−q1,q2,q3) on p1 surface in Octant
II are connected. More information about connected surface can
be found in the first two columns in Tab.1.

Here we give an example of a trajectory (cos~φ)(t) as
shown in Fig.6. The whole time length is one second. The
blue, red and black lines are cosφ1(t), cosφ2(t) and cosφ3(t),
respectively. The initial point in ~φ space is given as φ0 =
(0.8451,0.8451,0.8329) in Octant I. The final configuration is
φ f = (−0.8451,0.8451,0.8329) in Octant II.

Note that the equilibrium points along cosφi(t) is when the
point in ~φ space reaches the boundary of the ~φ space. Since there
is only one equilibrium for cosφi, to enter Octant II, ~̇φ should
point away from Octant I at that moment. So that the point will
then get out of Octant I and enter Octant II at the next time step.
This will cause the change of sign for φ1. The black line in Fig.7
shows the trajectory of ~φ(t). The black dotted line denotes the
sign change.

CONCLUSION
In this paper, we proposed a new parameterization method

to represent rotation matrix using the ~φ angles recoverd from the
three direction cosines that lies on the diagonal part. We find the
configuration space in terms of ~φ . It is centrally symmetric with
the origin. An onto map from ~φ space to the solid ball for SO(3)
is constructed which is useful to understand the singularities. We
also find a bi-invariant metric and two left-invariant metric for
measuring the distance in configuration space which could be
the foundation for path planning in ~φ space.

An advantage of the new parameterization presented in this
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FIGURE 7: ~φ(t).

paper is the intuitive nature of the variables, which are the an-
gles between the spatial fixed frame and the body fixed frame.
One negative feature of this parameterization is the singularities
induced by the definition of ~φ . This potentially can be solved
by introducing an extra angle into the variables, such as using a
non-orthogonal frame with four axes instead of three. Modifying
the current formulation to represent rotation matrices with more
angles in non-orthogonal frames will be explored in the future.
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